函数的应用高一数学

函数的应用高一数学
函数的应用高一数学1
函数的应用 (1)
教学目标:了解指数函数,对数函数等函数模型的应用
12.某种商品定价为每件60元,不加收附加税时,每年销售80万件,若政府征收附加税,每销售100元要征税p元,(即税率为p%),因此每年销售将减少 万件。
(1)将政府每年对该商品征收的总税金(万元)表成p的函数,并求出定义域
(2)要使政府在此项经营中每年征收税金不少于128万元,税率p%应怎样确定
(3)在所收税金不少于128万元前提下,要让厂家获得最大销售金额,如何确定p值
16.某客运公司购买了每辆价值为20万元的大客车投入运营,根据调查材料得知,每辆大客车每年客运收入约为10万元,且每辆客车第n年的油料费、维修费及其它各种管理费用总和与年数n成正比,又知第三年每辆客车以上费用是每年客运收入的48%
(1)写出每辆客车运营的总利润(客运收入扣除总费用及成本)(万元)与n(n∈N)的函数关系式;
(2)每辆客车运营多少年可使运营的年平均利润最大?并求出最大值。
17.某轮船在航行使用的燃料费用和轮船的航行速度的立方成正比,经测试,当船速为10公里/小时,燃料费用是每小时20元,其余费用(不论速度如何)都是每小时320元,试问该船以每小时多少公里的速度航行时,航行每公里耗去的总费用最少,大约是多少?
18.某工厂建一座平面图为矩形且面积为200平方米的三级污水处理池(如图)。如果池外围圈周壁建造单价为每米400元,中间两条隔墙建造单价为每米248元,池底建造单价为每平方米80元,池壁厚度不计。
(1)试设计水池的长宽,使总造价最低,并求最低造价;
(2)若受地形限制,水池长宽都不得超过16米,求最低造价。
课堂练习:略
小结:了解指数函数,对数函数等函数模型的应用
函数的应用高一数学2
一、内容及其解析
(一)内容:指数函数的性质的应用。
(二)解析:通过进一步巩固指数函数的图象和性质,掌握由指数函数和其他简单函数组成的复合函数的性质:定义域、值域、单调性,最值等性质。
二、目标及其解析
(一)教学目标
指数函数的图象及其性质的应用;
(二)解析
通过进一步掌握指数函数的图象和性质,能够构建指数函数的模型来解决实际问题;体会指数函数在实际生活中的重要作用,感受数学建模在解题中的作用,提高学生分析问题与解决问题的能力。
三、问题诊断分析
解决实际问题本来就是学生的一个难点,并且学生对函数模型也不熟悉,所以在构建函数模型解决实际问题是学生的一个难点,解决的方法就是在实例中让学生加强理解,通过实例让学生感受到如何选择适当的函数模型。
四、教学过程设计
探究点一:平移指数函数的图像
例1:画出函数 的图像,并根据图像指出它的单调区间.
解析:由函数的解析式可得:
其图像分成两部分,一部分是将 (x-1)的图像作出,而它的图像可以看作 的图像沿x轴的负方向平移一个单位而得到的,另一部分是将 的图像作出,而它的图像可以看作将 的图像沿x轴的负方向平移一个单位而得到的.
解:图像由老师们自己画出
变式训练一:已知函数
(1)作出其图像;
(2)由图像指出其单调区间;
解:(1) 的.图像如下图:
(2)函数的增区间是(-,-2],减区间是[-2,+).
探究点二:复合函数的性质
例2:已知函数
(1)求f(x)的定义域;
(2)讨论f(x)的奇偶性;
解析:求定义域注意分母的范围,判断奇偶性需要注意定义域是否关于原点对称。
解:(1)要使函数有意义,须 -1 ,即x 1,所以,定义域为(- ,0) (0,+ ).
(2)变式训练二:已知函数 ,试判断函数的奇偶性;
简析:∵定义域为 ,且 是奇函数;
探究点三 应用问题
例3某种放射性物质不断变化为其他物质,每经过一年,这种物质剩留的质量是原来的
84%.写出这种物质的剩留量关于时间的函数关系式.
【解】
设该物质的质量是1,经过 年后剩留量是 .
经过1年,剩留量
变式:储蓄按复利计算利息,若本金为 元,每期利率为 ,设存期是 ,本利和(本金加上利息)为 元.
(1)写出本利和 随存期 变化的函数关系式;
(2)如果存入本金1000元,每期利率为2.25%,试计算5期后的本利和.
分析:复利要把本利和作为本金来计算下一年的利息.
【解】
(1)已知本金为 元,利率为 则:
1期后的本利和为
2期后的本利和为
期后的本利和为
(2)将 代入上式得
六.小结
通过本节课的学习,本节课应用了指数函数的性质来解决了什么问题?如何构建指数函数模型,解决生活中的实际问题?







文档为doc格式